PrM- and cell-binding domains of the dengue virus E protein.

نویسندگان

  • S Wang
  • R He
  • R Anderson
چکیده

The E-prM proteins of flaviviruses are unusual complexes which play important roles in virus assembly and fusion modulation and in potential immunity-inducing vaccines. Despite their importance, little is known about the biogenesis and structural organization of E-prM complexes. Pulse-chase radiolabeling of dengue virus-infected Vero cells demonstrated a rapid interassociation of E and prM proteins, and sucrose gradient sedimentation analysis suggested that E-prM complexes progressed from simple heteromers to more densely sedimenting structures indicating increased multimerization. E-prM heteromers of even higher complexity were observed in virus particles, suggesting an intracellular assembly process which results in the networking of E-prM subunits into a lattice-like structure found in virus particles. Trypsin cleavage of E-prM-containing virus particles resulted in the release of a soluble 45-kDa fragment of the E protein which retained cell-binding activity. The results suggest that E-prM interactions in dengue virus particles are largely mediated by domains in the carboxy-terminal anchoring domain of E, while cell-binding activity is retained in a trypsin-releasable ectodomain of the E protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-Terminal Helical Domains of Dengue Virus Type 4 E Protein Affect the Expression/Stability of prM Protein and Conformation of prM and E Proteins

BACKGROUND The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein ...

متن کامل

Flow Cytometric Determination for Dengue Virus-Infected Cells: Its Application for Antibody-Dependent Enhancement Study

The theory of antibody-dependent enhancement plays an important role in the dengue virus infection. However, its molecular mechanism is not clearly studied partially due to lack of a sensitive assay to determine the dengue virus-infected cells. We developed a flow cytometric assay with anti-dengue antibody intracellular staining on dengue virus-infected cells. Both anti-E and anti-prM Abs could...

متن کامل

Dengue virus type-3 envelope protein domain III; expression and immunogenicity

Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...

متن کامل

Dengue Patients Exhibit Higher Levels of PrM and E Antibodies Than Their Asymptomatic Counterparts

Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembran...

متن کامل

Systematic Bioinformatic Approach for Prediction of Linear B-Cell Epitopes on Dengue E and prM Protein

B-cell epitopes on the envelope (E) and premembrane (prM) proteins of dengue virus (DENV) were predicted using bioinformatics tools, BepiPred, Ellipro, and SVMTriP. Predicted epitopes, 32 and 17 for E and prM proteins, respectively, were then characterized for their level of conservations. The epitopes, EP4/E (48-55), epitope number 4 of E protein at amino acids 48-55, EP9/E (165-182), EP11/E (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 73 3  شماره 

صفحات  -

تاریخ انتشار 1999